

Capacity Building - Module 5

Introduction to Survey Data Analysis & Use

Elke de Buhr, PhD Payson Center for International Development Tulane University

Statistics

- A field of study concerned with
 - The collection, organization, summarization, and analysis of data
 - The drawing of inferences about a body of data when only a part of the data is observed

Type of Statistics

- Descriptive data analysis
 - Organizing and summarizing data
- Statistical inference
 - Procedure by which we reach a conclusion about a population on the basis of the information contained in a sample that has been drawn from that population

Monitoring Strategy

- Comparison
 - Same group
 - Different groups
- Design balances accuracy and reliability with cost and feasibility

Sample Selection

- Sample size
- Sampling frame
- Sample selection = sampling
 - Probability sampling
 - Nonprobability sampling

Data Collection Methods

- Quantitative
 - Record reviews
 - Formal Surveys
 - Others
- Qualitative
 - Open ended interviews (key informants, etc.)
 - Focus group discussions (FGD)
 - Matrix ranking (preference)
 - Direct Observations
 - Others
 (IDRC, p. 149)

Differences between Methods

Quantitative methods

- Quantification in collection and analysis of data
- Testing of theories, deductive
- Incorporates natural, scientific model
- Views social reality as an external, objective reality

Qualitative methods

- Qualification of words/narrative in collection and analysis of data
- Generation of theories, inducive
- Emphasizes ways in which individuals interpret their social world
- Views social reality as a constantly shifting property of individuals' creation

(Bryman, Alan Social Research Methods, 2nd Ed. Oxford: Oxford University Press, 2004, p. 20-21)

Concepts, Variables and Indicators

	Example 1	Example 2	Example 3
Concepts	Size	Economic well-being	Health
Variables	Area	Income per capita	Life Expectancy
Indicators	Square kilometers	Purchasing Power Parity (PPP) GNP (\$) per capita	Average years of life if born in 1970

Categorical vs. Continuous Variables

- Continuous variables
 - A variable that can be measured (weight, height, age, etc.)
- Categorical variables
 - A variable that cannot be measured but can be categorized (ethnic group, age group, educational level, socio-economic class, etc.)

Categorical Scale

- Nominal scale
 - Lowest measurement scale, consists of "naming" observations or classifying them into various mutually exclusive and collectively exhaustive categories
 - Any assigned numerical value is merely for convenience (e.g. Christian = 1, Jewish = 2, Buddhist = 3)
- Ordinal scale
 - Observations are not only different from category but can be <u>ranked</u> according to some criterion, they are said to be measured on an ordinal scale
 - Assigned numerical value reflects rank order (e.g. Low socioeconomic status = 1, Medium socioeconomic status = 2, High socioeconomic status = 3)

Continuous Scale

- Interval scale
 - Measurement that has order and the distant between any two measurements is known
 - No true zero point (e.g. temperature)
- Ratio scale
 - Characterized by the fact that equality of ratios as well as equality of intervals may be determined
 - True zero point, zero indicates absence (e.g. height, length and weight)

Level of Measurements

	Mutually Exclusive (Distinction of difference)	Ordered (Distinction of the direction of difference)	Equal Intervals (Distinction of amount of difference)	True Zero Point
Nominal	X			
Ordinal	X	Х		
Interval	X	X	X	
Ratio	X	Х	X	X

Categorical Scale

- Nominal scale
 - Lowest measurement scale, consists of "naming" observations or classifying them into various mutually exclusive and collectively exhaustive categories
 - Any assigned numerical value is merely for convenience (e.g. Christian = 1, Jewish = 2, Buddhist = 3)
- Ordinal scale
 - Observations are not only different from category but can be <u>ranked</u> according to some criterion, they are said to be measured on an ordinal scale
 - Assigned numerical value reflects rank order (e.g. Low socioeconomic status = 1, Medium socioeconomic status = 2, High socioeconomic status = 3)

Continuous Scale

- Interval scale
 - Measurement that has order and the distant between any two measurements is known
 - No true zero point (e.g. temperature)
- Ratio scale
 - Characterized by the fact that equality of ratios as well as equality of intervals may be determined
 - True zero point, zero indicates absence (e.g. height, length and weight)

Data Analysis - Quantitative

- Type of variable
 - Categorical
 - Continuous
- Descriptive analysis
- Hypothesis testing

Descriptive Data Analysis

- Categorical/Continous data
 - Frequency tables
- Continuous data
 - Central tendency
 - Variability

Example of Frequency Table for a Nominal-Level Variable

Table 1: Developing Countries by Region

Region	Frequency (f)
East Asia/Pacific	23
Europe/Central Asia	28
Latin America/Caribbean	33
Middle East/North Africa	16
South Asia	8
Sub-Saharan Africa	49
Total (N)	157

Example of a Frequency Table for an Ordinal-Level Variable

Table 2: Developing Countries by Income Group

Income Group (GNP/Capita)	Frequency (f)	Percentage (%)
Low Income (<\$761)	63	40
Lower-Middle Income (\$761-3,030)	58	37
Upper-Middle Income (\$3,031-9,360)	36	23
Total (N)	157	100

Example for Ratio Variable

Table 3: Developing Countries by Health Expenditure per Capita

PPP \$/capita Most Recent Yr	Freq. (f)	Percent. (%)	Cumulative Percent. (%)
\$50 or less	22	23	23
\$51 to \$100	17	18	41
\$101 to \$300	25	26	67
\$301 to \$500	17	18	85
\$501 to \$1000	13	14	99
\$1001 or more	1	1	100
Total (N)	95	100	

Continuous Data

- Central tendency
 - Average or mean
 - Median
 - Mode
- Variability
 - Range
 - Variance
 - Standard deviation

Measures of Central Tendency

Mode

- Most frequent score
- Only appropriate measure of central tendency for categorical data without order (nominal scale)

Median

- Middle value of a distribution once the values have been ranked (Median of the numbers 1,2,3,4,5 is 3)
- If the sample contains an even number of observations, the median is the average of the middle two numbers (Median of the numbers 1,2,3,4,5,6 is (3+4)/2 = 3.5

Measures of Central Tendency (cont.)

Mean

- Sum of the observations in the sample or population, divided by the number of observations
- Arithmetic average (Mean of the integers one through five is (1+2+3+4+5)/5 = 15/5 = 3)

Measures of Central Tendency (cont.)

Appropriate Data Type Application
Nominal, Ordinal, and (sometimes) Interval, and Ratio Data
Ordinal-Level and Ratio and Interval Data (particularly when skewed)
Ratio or Interval-Level Data (and, though controversial, some ordinal-level data)

Measures of Variability

Range

Largest value minus the smallest value

Variance

 Sum of the deviation of each variable from the mean, squared, divided by N or by n-1, where N is the size of a population, and n is the size of a sample

Standard Deviation

 Square root of the variance (Standard deviation of the numbers 1,2,3,4,5 is √2.5 = 1.58)

Population Variance:

σ

$$\frac{\sum_{i=1}^{N} (x_i - \mu)^2}{NT}$$

2

Sample Variance: =

52

$$\frac{\sum_{i=1}^{n} \left(x_i - \frac{1}{x}\right)^2}{n-1}$$

Normal distribution

Figure 27.1: Normal distribution curve

Figures

- Categorical data
 - Bar charts
 - Pie charts
- Continous data
 - Histograms
 - Line graphs
 - Scatter diagrams

Histogram

Scatter Diagram

Figure 31.1: Weights and family incomes of 20 children 5 years of age

(IDRC)

Hypothesis Testing - Quantitative

- Formal statement that predicts relationship between one or more factors and the problem under study.
- Support or reject the null hypothesis
- Null = no relationship
- Test:
 - Compare same variable over time
 - Comparison between 2 or more groups

Scatter Diagram

Figure 31.1: Weights and family incomes of 20 children 5 years of age

(IDRC)

Hypothesis Testing - Quantitative

- Formal statement that predicts relationship between one or more factors and the problem under study.
- Support or reject the null hypothesis
- Null = no relationship
- Test:
 - Compare same variable over time
 - Comparison between 2 or more groups

Scatter Diagram

Figure 31.1: Weights and family incomes of 20 children 5 years of age

(IDRC)

Hypothesis Testing - Quantitative

- Formal statement that predicts relationship between one or more factors and the problem under study.
- Support or reject the null hypothesis
- Null = no relationship
- Test:
 - Compare same variable over time
 - Comparison between 2 or more groups

Scatter Diagram

Figure 31.1: Weights and family incomes of 20 children 5 years of age

(IDRC)

Hypothesis Testing - Quantitative

- Formal statement that predicts relationship between one or more factors and the problem under study.
- Support or reject the null hypothesis
- Null = no relationship
- Test:
 - Compare same variable over time
 - Comparison between 2 or more groups

Scatter Diagram

Figure 31.1: Weights and family incomes of 20 children 5 years of age

(IDRC)

Statistical Inference

- Develop a hypothesis
- Formulate the null hypothesis
- 3. Calculate a test statistic
- Calculate the probability (p-value) of null hypothesis being false
- Reject or accept the null hypothesis

Causal Relationship

- Independent vs. dependent indicators
- Statistical test
- Measures how strong relationship
- Linear correlation coefficient: how well the line drawn fits the observed data points
 - -r = 1; perfect fit
 - r = 0; no relationship

Linear Regression

Figure 31.2: Linear regression of weight of 5 years old children on family income

(IDRC, v2)

Relationship

Direction of Relationship

Data Analysis - Qualitative

- Descriptive
 - Classify responses
 - Level of agreement between responses
- Hypothesis testing
 - Comparing responses
 - Relationships between variables

Data Analysis - Triangulation

Methods

People Consulted

(Margoluis & Salafsky)

Communication of Results

- Often research findings are important to multiple audiences who can be reached by multiple communication channels
- The ideal audience passes the information it receives on to other people (multiplier effect)
- Select format:
 - Type of audience
 - Type of information
 - Cost